10 класс

Контрольная работа по теме «Кинематика. Динамика. Законы сохранения в механике» Базовый уровень

Вариант 1

- 1. Велосипедист движется равномерно по окружности радиусом 200 м. Определите путь и модуль перемещения велосипедиста за половину периода.
- 2. Велосипедист проехал 40 км со скоростью 20 км/ч, а потом еще 30 км проехал за 3 ч. Какова его средняя скорость на всем пути?
- 3. Пуля, летящая со скоростью 400 м/с, ударяется в земляной вал и застревает на глубине 0,36 м. Сколько времени двигалась пуля внутри вала?
- 4. Автомобиль движется по закруглению дороги радиусом 120 м со скоростью 36 км/ч. Чему равно центростремительное ускорение автомобиля?
- 5. Вагон массой 30 т, движущийся горизонтально со скоростью 1,5 м/с, автоматически на ходу сцепляется с неподвижным вагоном массой 20 т. С какой скоростью движется сцепка?
- 6. При каком ускорении разорвется трос при подъеме груза массой 500 кг, если максимальная сила натяжения, которую выдерживает трос не разрываясь, равна 15 кН?

Контрольная работа по теме «Кинематика. Динамика. Законы сохранения в механике» Базовый уровень Вариант 2

- 1. Вертолет, пролетев в горизонтальном полете по прямой 30 км, повернул под углом 90° и пролетел еще 40 км. Найти путь и модуль перемещения вертолета.
- 2. Автомобиль ехал 5 ч со скоростью 80 км/ч, а на следующие 200 км потратил 7 ч. Какова средняя скорость автомобиля на всем пути?
- 3. За какое время мяч, начавший свое падение без начальной скорости, пройдет путь 20 м?
- 4. Колесо велосипеда имеет радиус 40 см. С какой скоростью едет велосипедист, если колесо делает 120 оборотов за минуту?
- 5. Спусковую пружину игрушечного пистолета сжали на 5 см. При вылете шарик массой 20 г приобрел скорость 2 м/с. Необходимо рассчитать, какова жесткость пружины.
- 6. Метеорологическая ракета массой 0,4 т стартует вверх с ускорением 20м/с². Найти силу тяги, если средняя сила сопротивления воздуха на этом участке равна 2 кH.

Контрольная работа по теме «Молекулярная физика. Основы термодинамики» Базовый уровень Вариант 1

- 1. Под каким давлением находится газ в сосуде, если средняя квадратичная скорость его молекул 1000 м/с, концентрация молекул $3 \cdot 10^{25}$ м⁻³, а масса каждой молекулы $5 \cdot 10^{-26}$ кг?
- 2. Сосуд емкостью $2 \cdot 10^{-3}$ м³ наполнен азотом под давлением $2 \cdot 10^{5}$ Па при температуре 27 °C. Определите массу азота в сосуде, если его молярная масса 0,028 кг/моль.
- 3. При изохорном охлаждении идеального газа, взятого при температуре 480 К, его давление уменьшилась в 1,5 раза. Какой стала конечная температура газа?
- 4. Газ, занимающий некоторый объем под давлением $1,2 \cdot 10^5$ Па, изобарно расширяясь, совершил работу 1,8 кДж. Определить начальный объем газа, если после расширения его объем стал 45 л.
- 5. Для изобарного нагревания газа, количество вещества которого 800 моль, на 500 К ему сообщили количество теплоты 9,4 МДж. Определить работу газа и приращение его внутренней энергии.

Контрольная работа по теме «Молекулярная физика. Основы термодинамики» Базовый уровень Вариант 2

- 1. Какое давление на стенки сосуда производят молекулы газа, если масса газа $3 \cdot 10^{-3}$ кг, объем $0.5 \cdot 10^{-3}$ м³, средняя квадратичная скорость молекул 500 м/с?
- 2. Какова температура $1,6\cdot10^{-2}$ кг кислорода, находящегося под давлением $10^6\Pi a$ и занимающего объем $1,6\cdot10^{-3}$ м³? Молярная масса кислорода 0,032 кг/моль.
- 3. В цилиндре под поршнем находится $6\cdot10^{-3}$ м³ газа при температуре 323 К. До какого объема необходимо изобарно сжать этот газ, чтобы его температура понизилась до 220 К?
- 4. В процессе изобарного расширения газа была совершена работа, равная $400 \, \text{Дж}$. При каком давлении совершался процесс, если объем газа изменился с $0.3 \, \text{м}^3$ до $600 \, \text{л}$?
- 5. В идеальном тепловом двигателе абсолютная температура нагревателя в 3 раза выше, чем температура холодильника. Нагреватель передал газу количество теплоты 40 кДж. Какую работу совершил газ?

Контрольная работа по теме

«Электростатика. Постоянный электрический ток. Токи в различных средах» Базовый уровень

Вариант 1

- 1. Два одинаковых точечных заряда взаимодействуют в вакууме с силой 0,1 Н. Расстояние между зарядами равно 6 м. Найти величину этих зарядов.
- 2. В некоторой точке поля на заряд 3 нКл действует сила 0,6 мкН. Найти напряженность поля в этой точке.
- 3. Каково внутреннее сопротивление элемента, если его ЭДС равна 1,2 В и если при внешнем сопротивлении 5 Ом сила тока равна 0,2 А?
- 4. Какое количество теплоты выделится в резисторе сопротивлением 25 Ом при протекании по нему тока силой 1,2 А за 1,5 мин?

Контрольная работа по теме

«Электростатика. Постоянный электрический ток. Токи в различных средах» Базовый уровень

Вариант 2

- 1. С какой силой взаимодействуют в вакууме два точечных электрических заряда по 12 нКл, если расстояние между ними 3 см?
- 2. В электрическое поле напряженностью $2 \cdot 10^2$ Н/Кл внесли заряд 10^{-7} Кл. Какая сила действует на этот заряд?
- 3. ЭДС элемента 1,5 В, а внутреннее сопротивление 0,5 Ом. Какова сила тока в цепи, если сопротивление внешней цепи равно 2 Ом?
- 4. Электрический паяльник рассчитан на напряжение 12 В и силу тока 5 А. Какое количество теплоты выделится в паяльнике за 30 мин работы?